Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.

Identifieur interne : 000565 ( Main/Exploration ); précédent : 000564; suivant : 000566

Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.

Auteurs : Qiang Chen [États-Unis] ; Junyun He ; Waranyoo Phoolcharoen ; Hugh S. Mason

Source :

RBID : pubmed:21358270

Descripteurs français

English descriptors

Abstract

Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome that replicates in the nucleus of an infected plant cell, using the cellular DNA synthesis apparatus and a virus-encoded replication initiator protein (Rep). BeYDV-derived expression vectors contain deletions of the viral genes encoding coat and movement proteins and insertion of an expression cassette for a protein of interest. Delivery of the geminiviral vector to leaf cells via Agrobacterium-mediated delivery produces very high levels of recombinant DNA that can act as a transcription template, yielding high levels of mRNA for the protein of interest. Several vaccine antigens, including Norwalk virus capsid protein and hepatitis B core antigen, were expressed using the BeYDV vector at levels up to 1 mg per g of leaf mass. BeYDV replicons can be stacked in the same vector molecule by linking them in tandem, which enables production of multi-subunit proteins like monoclonal antibody (mAb) heavy and light chains. The protective mAb 6D8 against Ebola virus was produced at 0.5 mg per g of leaf mass. Multi-replicon vectors could be conveniently used to produce protein complexes, e.g. virus-like particles that require two or more subunits.

DOI: 10.4161/hv.7.3.14262
PubMed: 21358270
PubMed Central: PMC3166492


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.</title>
<author>
<name sortKey="Chen, Qiang" sort="Chen, Qiang" uniqKey="Chen Q" first="Qiang" last="Chen">Qiang Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Junyun" sort="He, Junyun" uniqKey="He J" first="Junyun" last="He">Junyun He</name>
</author>
<author>
<name sortKey="Phoolcharoen, Waranyoo" sort="Phoolcharoen, Waranyoo" uniqKey="Phoolcharoen W" first="Waranyoo" last="Phoolcharoen">Waranyoo Phoolcharoen</name>
</author>
<author>
<name sortKey="Mason, Hugh S" sort="Mason, Hugh S" uniqKey="Mason H" first="Hugh S" last="Mason">Hugh S. Mason</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21358270</idno>
<idno type="pmid">21358270</idno>
<idno type="pmc">PMC3166492</idno>
<idno type="doi">10.4161/hv.7.3.14262</idno>
<idno type="wicri:Area/Main/Corpus">000569</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000569</idno>
<idno type="wicri:Area/Main/Curation">000569</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000569</idno>
<idno type="wicri:Area/Main/Exploration">000569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.</title>
<author>
<name sortKey="Chen, Qiang" sort="Chen, Qiang" uniqKey="Chen Q" first="Qiang" last="Chen">Qiang Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Junyun" sort="He, Junyun" uniqKey="He J" first="Junyun" last="He">Junyun He</name>
</author>
<author>
<name sortKey="Phoolcharoen, Waranyoo" sort="Phoolcharoen, Waranyoo" uniqKey="Phoolcharoen W" first="Waranyoo" last="Phoolcharoen">Waranyoo Phoolcharoen</name>
</author>
<author>
<name sortKey="Mason, Hugh S" sort="Mason, Hugh S" uniqKey="Mason H" first="Hugh S" last="Mason">Hugh S. Mason</name>
</author>
</analytic>
<series>
<title level="j">Human vaccines</title>
<idno type="eISSN">1554-8619</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibodies, Monoclonal (biosynthesis)</term>
<term>DNA Helicases (MeSH)</term>
<term>Geminiviridae (genetics)</term>
<term>Geminiviridae (immunology)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Replicon (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Trans-Activators (MeSH)</term>
<term>Vaccines, Synthetic (biosynthesis)</term>
<term>Vaccines, Virus-Like Particle (biosynthesis)</term>
<term>West Nile Fever (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anticorps monoclonaux (biosynthèse)</term>
<term>Fièvre à virus West Nile (immunologie)</term>
<term>Geminiviridae (génétique)</term>
<term>Geminiviridae (immunologie)</term>
<term>Helicase (MeSH)</term>
<term>Réplicon (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Transactivateurs (MeSH)</term>
<term>Vaccins synthétiques (biosynthèse)</term>
<term>Vaccins à pseudo-particules virales (biosynthèse)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Vaccines, Synthetic</term>
<term>Vaccines, Virus-Like Particle</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Helicases</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Anticorps monoclonaux</term>
<term>Vaccins synthétiques</term>
<term>Vaccins à pseudo-particules virales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Geminiviridae</term>
<term>Replicon</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Geminiviridae</term>
<term>Réplicon</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Fièvre à virus West Nile</term>
<term>Geminiviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Geminiviridae</term>
<term>West Nile Fever</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Vectors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Helicase</term>
<term>Transactivateurs</term>
<term>Vecteurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome that replicates in the nucleus of an infected plant cell, using the cellular DNA synthesis apparatus and a virus-encoded replication initiator protein (Rep). BeYDV-derived expression vectors contain deletions of the viral genes encoding coat and movement proteins and insertion of an expression cassette for a protein of interest. Delivery of the geminiviral vector to leaf cells via Agrobacterium-mediated delivery produces very high levels of recombinant DNA that can act as a transcription template, yielding high levels of mRNA for the protein of interest. Several vaccine antigens, including Norwalk virus capsid protein and hepatitis B core antigen, were expressed using the BeYDV vector at levels up to 1 mg per g of leaf mass. BeYDV replicons can be stacked in the same vector molecule by linking them in tandem, which enables production of multi-subunit proteins like monoclonal antibody (mAb) heavy and light chains. The protective mAb 6D8 against Ebola virus was produced at 0.5 mg per g of leaf mass. Multi-replicon vectors could be conveniently used to produce protein complexes, e.g. virus-like particles that require two or more subunits.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21358270</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8619</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Human vaccines</Title>
<ISOAbbreviation>Hum Vaccin</ISOAbbreviation>
</Journal>
<ArticleTitle>Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>331-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome that replicates in the nucleus of an infected plant cell, using the cellular DNA synthesis apparatus and a virus-encoded replication initiator protein (Rep). BeYDV-derived expression vectors contain deletions of the viral genes encoding coat and movement proteins and insertion of an expression cassette for a protein of interest. Delivery of the geminiviral vector to leaf cells via Agrobacterium-mediated delivery produces very high levels of recombinant DNA that can act as a transcription template, yielding high levels of mRNA for the protein of interest. Several vaccine antigens, including Norwalk virus capsid protein and hepatitis B core antigen, were expressed using the BeYDV vector at levels up to 1 mg per g of leaf mass. BeYDV replicons can be stacked in the same vector molecule by linking them in tandem, which enables production of multi-subunit proteins like monoclonal antibody (mAb) heavy and light chains. The protective mAb 6D8 against Ebola virus was produced at 0.5 mg per g of leaf mass. Multi-replicon vectors could be conveniently used to produce protein complexes, e.g. virus-like particles that require two or more subunits.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Junyun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Phoolcharoen</LastName>
<ForeName>Waranyoo</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mason</LastName>
<ForeName>Hugh S</ForeName>
<Initials>HS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 AI075549</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI066332</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Hum Vaccin</MedlineTA>
<NlmUniqueID>101265291</NlmUniqueID>
<ISSNLinking>1554-8600</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014614">Vaccines, Synthetic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058425">Vaccines, Virus-Like Particle</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C045264">replication initiator protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017791" MajorTopicYN="N">Geminiviridae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="Y">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012093" MajorTopicYN="N">Replicon</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014614" MajorTopicYN="N">Vaccines, Synthetic</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058425" MajorTopicYN="N">Vaccines, Virus-Like Particle</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014901" MajorTopicYN="N">West Nile Fever</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21358270</ArticleId>
<ArticleId IdType="pii">14262</ArticleId>
<ArticleId IdType="pmc">PMC3166492</ArticleId>
<ArticleId IdType="doi">10.4161/hv.7.3.14262</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Bioeng. 2003 Mar 30;81(7):775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12557310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2000 May;181 Suppl 2:S317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10804144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Landmark Ed). 2009;14:3024-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Oct;23(10):523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16084615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 1999 Sep-Oct;5(5):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 May 1;106(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2005 Mar 18;23(17-18):2042-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 2001 Mar 25;753(1):51-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11302448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1998 Sep;79 ( Pt 9):2265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9747737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2010 Jul 5;28(30):4771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20470801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1465391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2010 Jun;23(3):259-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1999 Oct 15;56(3-4):313-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1999 Dec;17(3):477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Mar 15;128(10):3190-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs R D. 2006;7(4):203-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16784246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 May;75(9):4040-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2007 Apr;18(2):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17368018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2004 Jul-Aug;20(4):1001-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15296424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jan;8(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19929900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Jul 1;103(4):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Feb 5;93(2):271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16187337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2003 Feb 20;81(4):430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12491528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2001 Aug;38(2-3):133-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Apr 10;256(2):270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10191192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1998;50:183-234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Aug 15;308(1):94-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14701-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2008 Aug;216(2):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18330886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2010 Mar;9(3):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20218858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1988 Jun;7(6):1583-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2008 Mar 28;26(15):1846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18325641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Nov;66(11):6527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1328679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Mar;3(3):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="He, Junyun" sort="He, Junyun" uniqKey="He J" first="Junyun" last="He">Junyun He</name>
<name sortKey="Mason, Hugh S" sort="Mason, Hugh S" uniqKey="Mason H" first="Hugh S" last="Mason">Hugh S. Mason</name>
<name sortKey="Phoolcharoen, Waranyoo" sort="Phoolcharoen, Waranyoo" uniqKey="Phoolcharoen W" first="Waranyoo" last="Phoolcharoen">Waranyoo Phoolcharoen</name>
</noCountry>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Chen, Qiang" sort="Chen, Qiang" uniqKey="Chen Q" first="Qiang" last="Chen">Qiang Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000565 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000565 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21358270
   |texte=   Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21358270" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024